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Fig. 1. The pipeline of GLCDE.
1.  In this manuscript, we proposed an underestimation-assisted global and local cooperative DE to simultaneously enhance the effectiveness and efficiency. As shown in Fig.1, the proposed GLCDE is characterized by its underestimation-based global and local cooperative scheme. In GLCDE, the global exploration and the local exploitation are simultaneously performed for each generation. The exploration is carried out by employing the mutation strategies with strong exploration capability in the global phase, while the mutation strategies with strong exploitation capability are used to serve the exploitation purpose in the local phase. In both the global phase and local phase, a set of trial individuals is produced for each target individual by employing multiple mutation strategies. To select a promising one among them as the candidate, the underestimation model is used to evaluate the quality of these trial individuals rather than the real function value because the underetimation calculation is usually much cheaper than the real function evaluation, especially for the computationally expensiver problems (e.g. protein structure prediction problem). Based on the underestimation of each trial individual, the one with the lowest underestimation value is selected as the candidate offspring. That is, the accuracy of the underestimation model directly determines the candidate individual selected from the multiple trial individuals. However, in the underestimation model, the slope parameter M signifianctly affects the accuracy of the underestiation[1]. Therefore, we proposed an adaptive underestimation model, in which M is gradually self-adapted by learning the evaluated trial individuals. In addition, a kind of better-based strategy guided by individuals that are better than the target individual are designed to preserve the population diversity and exploitation capability simultaneously in the local phase. The major contributions of the paper are listed as follows:
1) Many mutation strategies have been developed to improve the performance of DE. However, each of them seems to be suitable for different tasks. Some of them are effective in exploring search spaces, whereas others have strong exploitation capability. Therefore, this paper presents an underestimation-assisted global and local cooperative DE to simultaneously enhance the effectiveness and efficiency by the cooperation of multiple strategies. In the proposed algorithm, two phases, namely, the global exploration and the local exploitation, are performed for each generation.
2) As multiple mutation strategies are simultaneously used in each phase to generate a set of trial individuals. The computational cost will be very expensive if we evaluate all trial individuals, especially for computationally expensive problems. Hence, a understimation model are constructed to estimate the function value of them. Howerver, the slope control parameter M in the understimation model which significantly affects the accuracy of the underestimation is difficult to determine[1]. Hence, we proposed a adapative underestimation model, in which the value of M is gradually self-adapted by learning the function evaluated trial individuals. 
3) The target of the local phase in the proposed algorithm is to enhance the convergence speed to find the optimal solution by executing the local search in the promising solution regions. Inspired by the social learning-based particle swarm optimization[4], a kind of better-based mutation strategy is proposed to preserve the population diversity and exploitation capability simultaneously in the local phase. In the strategy, the individuals better than the target individual are selected to guide the mutation.

4) In addition to the mutation strategy, the parameters (i.e.scaling factor F and crossover rate CR) highly influence the performance of DE. Inspired by the work in [5] and [6], a simple mechanism is designed to determine these two parameters adaptively. In this mechanism, the range of the parameter is divided into intervals with a step, and a selection probability updated according to the successful rate is allocated to each interval. The parameter has a higher probability to be generated in the interval with higher selection probability.
5) The proposed GLCDE are applied to predict the 3D structure of proteins. For the input target amino acid sequence, the fragment library with homologous fragments excluded is firstly generated by the ROBETTA server. Then the GLCDE is perfromed based on the fragment exchange and assembly to find the optimum solution of the energy function. Finally, the conformation with the lowest energy is selected as the predicted model. According to this method, all DE variants can be ultilized to predict the protein 3D structures. 
The performance of GLCDE is demonstrated by comparing with state-of-the-art DE variants, up-to-date DE methods, and the top DE algorithms in the CEC 2014-2017 competitions over the classical benchmark functions, CEC 2013, CEC 2014, and CEC 2017 test sets. The results indicate that GLCDE is obviously superior to or at least comparable with the competitors in the majority of cases. The contribution of each components is also investigated by experiments. In addition, GLCDE is utilized to predict 3D structures of 10 proteins to verify the effectiveness and efficiency for the real-world application. The results show that the structures predicted by GLCDE are more accurate than those of the competitors because GLCDE can identify lower energy conformations.
2.  We have added the description of the difference between this manuscript and our previously published journal papers in Section IV-F. The presented GLCDE in this manuscript is based on our previous work in [2] and [3], but it significantly differs from them in the following aspects:

1) In [2] and [3], the slope control parameter M of the supporting function which significantly influences the accuracy of the underestimation is set as a constant for all problems according to the numerical study. However, the value of M is gradually self-adapted by learning the function evaluated trial individuals in the proposed GLCDE. Therefore, GLCDE can get more accurate underestimation to guide the evolution process compared to [2] and [3]. This will be verified by the experimental results in Section VI-E of the manuscript.

2) The underestimation of the objective function is calculated for different purposes. In [2], the underestimation is constructed for all trial individuals to obtain the error between the underestimation and the real function value, and the underestimation error is applied to measure the degree of convergence. In [3], the underestimation is utilized to exclude the invalid search region and guide the local enhancement. However, the underestimation is constructed based on the only two individuals near the trial individual to filter multiple trial individuals generated in both local and global phases.
3) Different mutation strategies are used or designed for these three algorithms. In [2], the whole search process is dynamically divided into three stages to select suitable mutation strategies from the corresponding strategy pools. In [3], only a single mutation strategy is employed for the trial individual generation in the whole searching process. In the proposed GLCDE, each individual is performed both the global phase and local phase by using different mutation strategies, and multiple mutation strategies are utilized to simultaneously create a set of trial individuals in each phase. To reduce the computational cost, the underestimtaion model, as an important component, is constructed to filter the multiple trial individuals.
4) In [2], a centroid-based mutation strategy which uses the centroid of multiple superior individuals is proposed to balance the convergence speed and population diversity in the second stage. In the proposed GLCDE, a different new mutation strategy named better-based mutation strategy is designed for the local phase. In the new strategy, the information of individuals better than the target individual is applied to guide the exploitation. The comparison of these two strategies will be reported in Section VI-E of the manuscript.
5) In [2], the crossover rate CR and scaling factor F is adaptively determined according to their weighted mean of the sucess values in the previous generation. In [3], these two parameters is generated by using the method from other published papers. However, in our proposed GLCDE, the range of the parameter is divided into multiple intervals with a step, and a selection probability updated according to the successful rate is allocated to each interval. The parameter has a higher probability to be generated in the interval with higher selection probability.
[1] A. M. Rubinov, “Abstract convexity: examples and applications,” Optim., vol. 47, no. 1-2, pp. 1–33, 2000.
[2] X. G. Zhou and G. J. Zhang, “Abstract convex underestimation assisted multistage differential evolution,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2730–2741, Sep. 2017. 
[3] X. G. Zhou, G. J. Zhang, X. H. Hao, D. W. Xu, and L. Yu, “Enhanced differential evolution using local lipschitz underestimate strategy for computationally expensive optimization problems,” Appl. Soft Comput., vol. 48, pp. 169–181, Nov. 2016. 
[4] C. Sun, Y. Jin, R. Cheng, J. Ding, and J. Zeng, “Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems,” IEEE Trans. Evol. Comput., vol. 21, no. 4, pp. 644–660, Aug. 2017. 
[5] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Tran. Evol. Comput., vol. 13, no. 2, pp. 398–417, 2009.

[6] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren,“Differential evolution algorithm with ensemble of parameters and mutation strategies,” Appl. Soft Comput., vol. 11, no. 2, pp. 1679–1696, Mar. 2011. 
3.  A new section named “Application of GLCDE to Protein Structure Prediction” is added to Section V. In this section, the proposed GLCDE is applied to solve the protein structure prediction problem. As shown in Fig. 2 below, for the input target amino acid sequence, the fragment library with homologous fragments (sequence identity >30%) removed is firstly generated by the ROBETTA full-chain PSP server (http://robetta.bakerlab.org). Then the initial population is produced by randomly picking up the fragment of each residue position from the corresponding fragment library to assemble NP conformations. For each conformation in the population, the global and local phases are conducted to generate the trial conformation. In each phase, the mutation is performed by fragments exchange between different conformations. In the crossover, a fragment is randomly chosen from the target conformation to replace the corresponding position in the mutation conformation. Moreover, to improve the quality and diversity of the conformation, a random fragment assembly is also performed for the mutation conformations. As introduced in Section IV, three different trial conformations are simultaneously generated for each target conformation in both local and global phases. To reduce the computational cost, the adaptive underestimation model described in Section IV-A is constructed based on the coordinates of all 
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atoms of each conformation to measure the quality of each trial conformation, and the best one with lower underestimation value is selected as the candidate offspring conformation. By iterating the global exploration, local exploitation, and population updating with specific times, the conformation with the lowest energy in the last generation will be selected as the predicted final model. 
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Fig. 2. The pipeline of the proposed GLCDE for PSP problem.
We have test the above process on 10 non-redunant proteins by comparing with the state-of-the-art DE variants and several surrogate-based DE variants. The results indicate that the structures predicted by GLCDE are more accurate than those of the competitors because GLCDE can identify lower energy conformations.
Response to Referee 1
Thank you for your comments. We have revised our manuscript according to your comments:
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Response: Thank you for this comment. In this manuscript, we proposed an underestimation- assisted global and local cooperative DE to simultaneously enhance the effectiveness and efficiency. As shown in Fig.1, the proposed GLCDE is characterized by its underestimation-based global and local cooperative scheme. In GLCDE, the global exploration and the local exploitation are simultaneously performed for each generation. The exploration is carried out by employing the mutation strategies with strong exploration capability in the global phase, while the mutation strategies with strong exploitation capability are used to serve the exploitation purpose in the local phase. In both the global phase and local phase, a set of trial vectors is produced for each target individual by employing multiple strategies. To select the promising one among them as the candidate, the underestimation model is used to evaluate the quality of these trial individuals rather than the real function value because the underetimation calculation is usually much cheaper than the real function evaluation, especially for the computationally expensiver problems (e.g. protein structure prediction problem). Based on the underestimation of each trial individual, the one with the lowest underestimation value is selected as the candidate individuals. That is, the accuracy of the underestimation model directly determines the candidate individual selected from the multiple trial individuals. However, in the underestimation model, the slope parameter M signifianctly affects the accuracy of the underestiation. Therefore, we proposed an adaptive underestimation model, in which M is gradually self-adapted by learning the evaluated trial individuals. In addition, a kind of better-based strategy guided by individuals that are better than the target individual are designed to preserve the population diversity and exploitation capability simultaneously in the local phase. A simple mechanism is also designed to determine the parameter of DE adaptively in the searching process.
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Fig. 1. The pipeline of GLCDE.
We have added the description of the difference between this manuscript and our previously published journal papers in Section IV-F. The contribution of the manuscript is also highlighted in the manuscript. 
1.  In the proposed GLCDE, each individual is performed both the global phase and local phase. In each phase, multiple candidate offsprings are simultaneously generated for each target individual by using different mutation strategies. The underestimation model is used to evaluate the quality of the candidate individuals rather than the real function value because the underetimation calculation is usually much cheaper than the real function evaluation, especially for the computationally expensiver problems (e.g. protein structure prediction problem). Based on the underestimation of each candidate offsrping, the one with the lowest underestimation value is selected as the offspring individual. The accuracy of the underestimation model directly determines the individual selected from the multiple candidate individuals. However, in the underestimation model, the slope parameter M signifianctly affects the accuracy of the underestiation. For example, the underestimation models with M=6.5, M=15, and M=30 for a 1-D function are depicted in Fig. 2. As shown in the figure, for M=6.5, some regions of the underestimation are above the objective function while we want to get the lower bound of the objective function. For M=15 and M=30, although the underestimations are always below the objective function, the underestimation with M=15 is more accurate than that of M=30 because it is closer to the objective function. Therefore, a suitable M is crucial to achieving an accurate underestimation with small error. In GLCDE, we proposed an adaptive underestimation model, in which M is gradually self-adapted by learning the evaluated trial individuals. The performance of the underestimation model with adaptive M is also demonstrate by comparing with the underestimation model using fixed M in Section VI-E.
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Fig. 2. The underestimation curves with different values of the slope controlparameter M for a 1-D function.
2.  Yes, the better-based strategy is not the main innovation point of this paper as many similar strategies have been proposed for DE. The new point of this manuscript is the underestimation-based global and local cooperative scheme. Different from other new mutation strategies, in the better-based mutation strategy, all individuals that are better than each target individual in the current population are respectively grouped into an independent set. For each target, an individual is randomly selected from the corresponding set to guide the mutation, i.e.
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 and the target inidividual. In the local phase, the better-based mutation strategy is used to preserve the population diversity and exploitation capability simultaneously. The contribution of the better-based mutation strategy is verified in Section VI-E-3). In addition, the better-based mutation strategy is compared with some new mutation strategies in Section VI-E-3). The result shows that the proposed better-based mutation strategy performs better than the competitors on most of the cases.
3.  Yes, the proposed parameter adaptive method of DE is not new as many similar approaches have been presented for DE [4-7]. To further improve the performance of GLCE, inspired by the work in [4-7], a simple mechanism is designed to determine the crossover rate CR and scaling factor F adaptively. In this mechanism, the range of the parameter is divided into multiple intervals with a step, and a selection probability updated according to the successful rate is allocated to each interval. The parameter has a higher probability to be generated in the interval with higher selection probability. Different from the work which determine the value of the parameter by a normal distribution with an updated mean value and the method that combines different fix values of CR and F, the proposed method generate the parameter in the interval whose probabiliy is dynamically updated. The contribution of the proposed parameter adaptive method is demonstrated in Section VI-E-4). Futhermore, we compared the proposed parameter adaptive method with some state-of-the-art parameter adaptive techniques in Section VI-E-4). The results indicate that the proposed method is superior to the compared algirithms in the majority of problems. 
4.  The major contributions of the paper are listed as follows:
1) There are many mutation strategies are developed to improve the performance of DE. However, each of them seems to be suitable for different tasks. Some of them are effective in exploring search spaces, whereas others have strong exploitation capability. Therefore, this paper presents an underestimation-assisted global and local cooperative DE to simultaneously enhance the effectiveness and efficiency by the cooperation of multiple strategies. In the proposed algorithm, two phases, namely, the global exploration and the local exploitation, are performed in each generation.
2) As multiple mutation strategies are simultaneously used in each phase to generate a set of candidate offsprings. The computational cost will be very expensive if we evaluate all candidate offsprings, especially for computationally expensive problems. Hence, a understimation model are constructed to estimate the function value of them. Howerver, the slope control parameter M in the understimation model which affects the accuracy of the underestimation is difficult to determine. Hence, we proposed a adapative underestimation model, in which the value of M is gradually self-adapted by learning the evaluated trial individuals. 
3) The target of the local phase in the proposed algorithm is to enhance the convergence speed to find the optimal solution by executing the local search in the promising solution regions. Inspired by the social learning-based particle swarm optimization [3], a kind of better-based mutation strategy is proposed to preserve the population diversity and exploitation capability simultaneously in the local phase. In the strategy, the individuals better than the target individual are selected to guide the mutation. 
4) In addition to the mutation strategy, the parameters (i.e.scaling factor F and crossover rate CR) highly influence the performance of DE. Inspired by the work in [4-7], a simple mechanism is designed to determine these two parameters adaptively. In this mechanism, the range of the parameter is divided into multiple intervals with a step, and a selection probability updated according to the successful rate is allocated to each interval. The parameter has a higher probability to be generated in the interval with higher selection probability.
5) The proposed GLCDE are applied to to predict the 3D structure of proteins. For the input target amino acid sequence, the fragment library with homologous fragment excluded is firstly generated by the ROBETTA server. Then the GLCDE is perfromed based on the fragment exchange and assembly to find the optimum solution of the energy function. Finally, the conformation with the lowest energy is selected as the final model. According to this method, all DE variants can be ultilized to predict the protein 3D structures.
The performance of GLCDE is demonstrated by comparing with state-of-the-art DE variants, up-to-date DE methods, and the top DE algorithms in the CEC 2014-2017 competitions over the classical benchmark functions, CEC 2013, CEC 2014, and CEC 2017 test sets. The results indicate that GLCDE is obviously superior to or at least comparable with the competitors in the majority of cases. The contribution of each components is also investigated by experiments. In addition, GLCDE is utilized to predict 3D structures of 10 proteins to verify the effectiveness and efficiency for the real-world application. The results show that the structures predicted by GLCDE are more accurate than those of the competitors because GLCDE can identify lower energy conformations.
5.  The presented GLCDE in this manuscript is based on our previous work in [1] and [2], but it significantly differs from them in the following aspects:

1) In [1] and [2], the slope control parameter M of the supporting function which significantly influences the accuracy of the underestimation is set as a constant for all problems according to the numerical study. However, the value of M is gradually self-adapted by learning the evaluated trial individuals in the proposed GLCDE. Therefore, GLCDE can get more accurate underestimation to guide the evolution process compared to [1] and [2]. This will be verified by the experimental results in Section VI-E of the manuscript.

2) The underestimation of the objective function is calculated for different purposes. In [1], the underestimation is constructed for all trial individuals to obtain the error between the underestimation and the real function value, and the underestimation error is applied to measure the degree of convergence. In [2], the underestimation is utilized to exclude the invalid search region and guide the local enhancement. However, the underestimation is constructed based on the only two individuals near the trial individual to filter multiple candidate individuals generated in both local and global phases.
3) Different mutation strategies are used or designed for these three algorithms. In [1], the whole search process is dynamically divided into three stages to select suitable mutation strategies from the corresponding strategy pools. In [2], only a single mutation strategy is employed for the trial individual generation in the whole searching process. In the proposed GLCDE, each individual is performed both the global phase and local phase by using different mutation strategies, and multiple mutation strategies are utilized to simultaneously create a set of candidate individuals in each phase. To reduce the computational cost, the underestimtaion model, as an important component, is constructed to filter the multiple trial individuals.
4) In [1], a centroid-based mutation strategy which uses the centroid of multiple superior individuals is proposed to balance the convergence speed and population diversity in the second stage. In the proposed GLCDE, a different new mutation strategy named better-based mutation strategy is designed for the local phase. In the new strategy, the information of individuals better than the target individual is apply to guide the exploitation. The comparison of these two strategies will be reported in Section VI-E of the manuscript.
5) In [1], the crossover rate CR and scaling factor F is adaptively determined according to their weighted mean of the sucess value in the previous generation. In [2], these two parameters is generated by using the method from other published papers. However, in our proposed GLCDE, the range of the parameter is divided into multiple intervals with a step, and a selection probability updated according to the successful rate is allocated to each interval. The parameter has a higher probability to be generated in the interval with higher selection probability.
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[5] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren,“Differential evolution algorithm with ensemble of parameters and mutation strategies,” Appl. Soft Comput., vol. 11, no. 2, pp. 1679–1696, Mar. 2011. 
[6] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “An improved self-adaptive differential evolution algorithm for optimization problems,” IEEE Trans. Ind. Inf., vol. 9, no. 1, pp. 89–99, Feb. 2013.

[7] R. A. Sarker, S. M. Elsayed, and T. Ray, “Differential evolution with dynamic parameters selection for optimization problems,” IEEE Trans. Evol. Comput., vol. 18, no. 5, pp. 689–707, Oct. 2014.
Response: Thank you for your suggetsion. We have tested the proposed GLCDE with different number of trial individuals generated for each individual. The results are reported in the table below shown that 3 trial vectors generated for each individual in GLCDE will obatins better performance.

The results are reported in the Table S30, where GLCDE-t2, GLCDE-t3, GLCDE-t4, and GLCDE-t5 represent 2, 3, 4, and 5 trial vectors are generated for each target individual in GLCDE, respectively. In the table, K+ means that the algorithm obtains the best result among all algorithms, and K− and K≈ indicate that the algorithm is significantly worse than and almost similar to the best algorithm, respectively. In these four GLCDE algorithms, the DE/rand/1 and DE/better/1 are used in the global phase and local phase, respectively. From the results shown in the table, we can find that 3 trial vectors generated for each individual in GLCDE will obatins better performance as GLCDE-t3 gets the best results on 19 out of 23 functions. Although the results of GLCDE-t4 is similar to that of GLCDE-t3, the computational cost will increase if we generate more trial inividuals for each individual, since we need to evaluate each trial individual using the underestimate value. Therefore, 3 trial vectors generated for each individual is the best choice for GLCDE.
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Response: Thank you for this suggestion. We have studied the number of individuals for the underestimation model construction in our previous work [1]. The results show that the performance of the algorithm is less sensitive to the number of individuals are used. However, the computational complexity increased with the number of inidviduals, as more inidividuals will be used to calculate the supporting functions. Thus, to reduce the computational complexity , we only use two individuals to caluculate the underestimation value of each trial inidvidual in the proposed GLCDE.

[1] X. G. Zhou, G. J. Zhang, X. H. Hao, and L. Yu, “A novel differential evolution algorithm using local abstract convex underestimate strategy for global optimization,” Comput. Oper. Res., vol. 75, no. 11, pp. 132–149, Nov. 2016.
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Response: Fig .2 .a. is a negative example to show that the underestimation will be above the objective function if the slope control parameter M is not suitable. Therefore, in the manuscript, we proposed an adaptive underestimation model with M dynamically updated to obtain more accurate underestimation. The proposed adaptive underestimation model which is used to reduce the computational cost plays an important role in the multiple candidate individual filtering. The contribution the proposed adaptive underestimation model is also verified in Section VI-E.
Response: Thank you for this comment. In GLCDE, the global exploration and the local exploitation are simultaneously performed for each generation. The exploration is carried out by employing the mutation strategies with strong exploration capability in the global phase, while the better-based mutation strategies are designed to serve the exploitation purpose in the local phase.
Table 1 The results of GLCDE-b and GLCDE on 30-D benchmark functions
	
	GLCDE-b
	GLCDE

	
	Mean(Std Dev)
	Mean(Std Dev)

	f1
	2.12E−45(1.61E−45)
	1.80E−45(3.63E−45)

	f2
	4.42E−43(5.86E−43)
	6.90E−43(2.07E−42)

	f3
	2.14E−24(1.05E−24)
	3.49E−24(2.11E−24)

	f4
	1.51E+02(1.08E+02)
	1.95E+02(1.12E+02)

	f5
	3.66E−02(4.65E−02)
	3.49E−02(4.94E−02)

	f6
	0.00E+00(0.00E+00)
	0.00E+00(0.00E+00)

	f7
	8.95E−46(5.59E−46)
	3.76E−45(3.96E−45)

	f8
	9.81E−03(2.47E−03)
	7.17E−03(1.15E−02)

	f9
	0.00E+00(0.00E+00)
	0.00E+00(0.00E+00)

	f10
	5.66E+00(1.54E+00)
	3.39E+00(5.32E−01)

	f11
	0.00E+00(0.00E+00)
	0.00E+00(0.00E+00)

	f12
	6.12E−06(6.61E−06)
	6.05E−06(5.23E−06)

	f13
	0.00E+00(0.00E+00)
	0.00E+00(0.00E+00)

	f14
	0.00E+00(0.00E+00)
	0.00E+00(0.00E+00)

	f15
	1.57E−32(2.88E−48)
	1.57E−32(2.88E−48)

	f16
	1.35E−32(2.88E−48)
	1.35E−32(2.88E−48)

	f17
	4.47E−15(1.23E−15)
	5.42E−15(1.83E−15)

	f18
	1.29E−03(2.05E−03)
	1.45E−03(2.24E−03)

	f19
	1.57E−32(2.88E−48)
	1.57E−32(2.88E−48)

	f20
	1.35E−32(2.88E−48)
	1.35E−32(2.88E−48)

	f21
	1.85E+02(3.18E+02)
	1.54E+02(2.97E+02)

	f22
	3.57E−04(4.51E−04)
	4.88E−04(6.81E−04)

	f23
	2..00E−01(3.16E−02)
	2.00E−01(3.72E−09)


1. This is a good suggestion to improve the performance of our proposed GLCDE. Inspired by your suggestion, we tested our GLCDE by replacing "x_better" using the second best individual in the mutation of the best individual. The results on the 30-D benchmark functions are reported in Table 1 above, where GLCDE-b means the algorithm using the second best individual for the best individual in the better-based mutation strategy. The best results are marked as bold. From the data, we can find that GLCDE-b obtains better results on 7 functions, while GLCDE achieves better results on 5 functions. For the other problems, they get the same results. In total, the performance of GLCDE is slightly improved by replacing "x_better" with the second best individual in the mutation just for the best individual.
2. We have tested the proposed GLCDE on 30-D benckmark functions by replacing the “better” individual by “best” one in better-based mutation strategies. The results are given in the Table 2 below, where GLCDE-best represents the GLCDE using the best-based mutation strategies. The symbols “+”, “≈”, and “−“ are employed to indicate when the performance of GLCDE-best is significantly better than, nearly equal to, and remarkably worse than GLCDE, respectively. 
Table 2 The results of GLCDE-best and GLCDE on 30-D benchmark functions

	
	GLCDE-best
	GLCDE

	
	Mean(Std Dev)
	Mean(Std Dev)

	f1
	5.22E−47(1.04E−46)+
	1.80E−45(3.63E−45)

	f2
	6.15E−45(9.44E−45)+
	6.90E−43(2.07E−42)

	f3
	1.93E−27(8.61E−27)+
	3.49E−24(2.11E−24)

	f4
	2.48E−01(1.36E−01)+
	1.95E+02(1.12E+02)

	f5
	5.78E−02(1.68E−02)−
	3.49E−02(4.94E−02)

	f6
	0.00E+00(0.00E+00)≈
	0.00E+00(0.00E+00)

	f7
	6.01E−47(1.03E−46)+
	3.76E−45(3.96E−45)

	f8
	2.73E−03(1.59E−03)+
	7.17E−03(1.15E−02)

	f9
	0.00E+00(0.00E+00)≈
	0.00E+00(0.00E+00)

	f10
	1.71E+01(1.97E+01)−
	3.39E+00(5.32E−01)

	f11
	0.00E+00(0.00E+00)≈
	0.00E+00(0.00E+00)

	f12
	1.86E−02(8.65E−03)−
	6.05E−06(5.23E−06)

	f13
	0.00E+00(0.00E+00)≈
	0.00E+00(0.00E+00)

	f14
	9.42E−02(2.98E−01)−
	0.00E+00(0.00E+00)

	f15
	4.80E−29(8.25E−29)−
	1.57E−32(2.88E−48)

	f16
	3.21E−30(7.74E−30)−
	1.35E−32(2.88E−48)

	f17
	1.61E−14(7.14E−15)−
	5.42E−15(1.83E−15)

	f18
	7.80E+01(9.05E+00)−
	1.45E−03(2.24E−03)

	f19
	1.04E−02(3.28E−02)−
	1.57E−32(2.88E−48)

	f20
	9.37E−27(2.15E−26)−
	1.35E−32(2.88E−48)

	f21
	2.00E+03(1.50E+03)−
	1.54E+02(2.97E+02)

	f22
	1.21E−02(7.87E−03)−
	4.88E−04(6.81E−04)

	f23
	2.60E−01(6.99E−02)−
	2.00E−01(3.72E−09)

	+/≈/−
	6/4/13
	


As seen, GLCDE-best is signifcantly better than GLCDE on 6 unimodal problems. But GLCDE performs significantly better than GLCDE-best on 13 cases, including 2 single-modal problems and 11 multimodal functions. This is because the best-based strategies use the best solution found so far to guide the searching process. However, the population is easy to lose the diversity and the global exploration capability to explore new promising solution regions in many cases, thereby falling into a local optimal point. Compared to the best-based strategies, the target individuals are not always attracted toward the same globally best individual in the proposed better-based strategies, thereby preventing premature convergence. Therefore, the better-based strategies adopted in the local phase ensure that the promising regions explored in the global phase are exploited and better promising regions are explored.
3. The mutation strategies used in the global phase are DE/rand/1, DE/rand/2, and DE/current-to-rand/1. We have described this in Section IV-A.
Response: Thanks for your suggestion.
1. This is a good suggestion to improve the performance of our proposed GLCDE. I am sure that generate the value of CR in the range of (0, 0.9] will improve the performance of GLCDE for the CEC problems. We will take this consideration in our future work. However, in the current manuscript, the range of CR is chosen according to the suggestion in one of the sate-of-the-art methods EPSDE that are proposed by Suganthan et al.[1]. The experimental results demonstrate that the proposed GLCDE using the CR taken from this range can performs better than the control methods on both classical benchmark functions and CEC test set. In addition, the experiments for each component reported in Section VI-E-4) also show the contribution of the CR and F adaption method in the proposed GLCDE. 
2. Similarly, the parameter F is also adaptively generated using the method for CR, while the range of F is [0.4, 0.9] on the basis of the suggestion by Suganthan et al.[1].
[1] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren,“Differential evolution algorithm with ensemble of parameters and mutation strategies,” Appl. Soft Comput., vol. 11, no. 2, pp. 1679–1696, Mar. 2011.
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Response: Thanks for your suggestion.
1. In Section VI-C, we have added the comparison between our proposed GLCDE and UMOEAII[1-2] on the CEC 2014 benchmark set. The results listed in the table below show that GLCDE is slightly better than UMOEAII. GLCDE is significantly better than UMOEAII on 12 out of 30 cases, while UMOEAII significantly outperforms GLCDE on 10 functions for the 30-D problems. For 50-D functions, GLCDE performs significantly better than UMOEAII on 13 cases, while UMOEAII is obviously better than GLCDE on 11 problems. The detailed results are given in Tables S10 and S11 of the supplementary file.
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2. The comparison between the UMDE and GLCDE on the CEC 2013 benchmark set is also added to Section VI-B. The results listed in the table below show that GLCDE is significantly better than UMDE on 14 and 13 out of 30 cases for 30-D and 50-D functions, respectively. UMDE perfroms obviously better than GLCDE on 4 and 11 cases for 30-D and 50-D functions, respectively. The detailed results are shown in Tables S7 and S8 of the supplementary file.
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[1] S. M. Elsayed, R. A. Sarker, D. L. Essam, and N. M. Hamza, “Testing united multi-operator evolutionary algorithms on the CEC2014 real-parameter numerical optimization,” in in Proc. IEEE Congr. Evol. Comput., Beijing, China, 2014, pp. 1650–1657.

[2] S. M. Elsayed, N. M. Hamza, and R. A. Sarker, “Testing united multi-operator evolutionary algorithms-II on single objective optimization problems,” in in Proc. IEEE Congr. Evol. Comput., Vancouver, Canana, 2016, pp. 2966–2973.

[image: image20]
Response: Thanks for your suggestion. The computational time of the proposed GLCDE on the problem with different dimensions is added to Section VI-F. The results are shown as follow:
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The results show that 
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 increase linearly with the number of dimensions, and 
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 grows linearly. In addition, the effectiveness and efficiency of the proposed GLCDE on a real-world expensive problem (i.e., the protein structure prediction problem) is also verified by comparing with these approaches which are also developed for computationally expensive problems (Section VI-G). The results shown in the tables below indicate that GLCDE is more effective and efficiency than the compared algorithms for the PSP problem, as it can generate more accurate models with lower RMSD and higher TM-score.
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Response: Thanks for your suggestion. The following papers published over the last few years are added to literature review section and other sections:

[1] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “An improved self-adaptive differential evolution algorithm for optimization problems,” IEEE Trans. Ind. Inf., vol. 9, no. 1, pp. 89–99, Feb. 2013.
[2] R. A. Sarker, S. M. Elsayed, and T. Ray, “Differential evolution with dynamic parameters selection for optimization problems,” IEEE Trans. Evol. Comput., vol. 18, no. 5, pp. 689–707, Oct. 2014.
[3] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Multi-operator based evolutionary algorithms for solving constrained optimization problems,” Comput. Oper. Res., vol. 38, no. 12, pp. 1877–1896, Dec. 2011.
[4] S. M. Elsayed, N. M. Hamza, and R. A. Sarker, “Testing united multi-operator evolutionary algorithms-II on single objective optimization problems,” in in Proc. IEEE Congr. Evol. Comput., Vancouver, Canana, 2016, pp. 2966–2973.
[5] S. M. Elsayed, R. A. Sarker, D. L. Essam, and N. M. Hamza, “Testing united multi-operator evolutionary algorithms on the CEC2014 real-parameter numerical optimization,” in in Proc. IEEE Congr. Evol. Comput., Beijing, China, 2014, pp. 1650–1657.
[6] V. A. Tatsis and K. E. Parsopoulos, “Differential evolution with grid-based parameter adaptation,” Soft Comput., vol. 21, no. 8, pp. 2105–2127, Apr. 2017.

[7] V. A. Tatsis and K. E. Parsopoulos, “Dynamic parameter adaptation in metaheuristics using gradient approximation and line search,” Appl. Soft Comput., vol. 74, pp. 368–384, Jan. 2019.
[8] N. H. Awad, M. Z. Ali, R. Mallipeddi, and P. N. Suganthan, “An improved differential evolution algorithm using efficient adapted surrogate model for numerical optimization,” Inf. Sci., vol. 451, pp. 326–347, Jul. 2018.
[9] Y. Wang, D. Q. Yin, S. Yang, and G. Sun, “Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints,” IEEE Trans. Cybern., 2018, DOI: 10.1109/TCYB.2018.2809430, to be published.
[10] H. Wang, Y. Jin, and J. Doherty, “Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2664–2677, Jun. 2017.

[11] W. Gong, A. Zhou, and Z. Cai, “A multioperator search strategy based on cheap surrogate models for evolutionary optimization,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 746–758, Oct. 2015.

[12] B. Liu, Q. Zhang, and G. Gielen, “A gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems,” IEEE Trans. Evol. Comput., vol. 18, no. 2, pp. 180–192, Apr. 2014.

[13] R. Mallipeddi and M. Lee, “An evolving surrogate model-based differential evolution algorithm,” Appl. Soft Comput., vol. 34, pp. 770–787, Sep. 2015.
Response to Referee 2
Thank you for your comments. We have revised our manuscript according to your comments:
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Response: Thanks for your suggestion. This is a good suggestion to highlight the contribution of each component. We have added the experiment to distinguish the most crucial component of the proposed GLCDE in Section VI-E-5). The results are shown as follow:
[image: image28.jpg]TABLE XIV
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In this experiment, GLCDE is compared with different combinations of the three components (i.e. GLCDE1, GLCDE2, GLCDE3, GLCDE12, GLCDE13, and GLCDE23), where 1, 2, 3 represents the adaptive underestimation model, better-based mutation strategies, and parameter adaptive scheme of DE, respectively. In these algorithms, the global and local cooperation scheme is still included. Table S21 of the supplementary file gives the results achieved by these seven algorithms for all functions. As seen, GLCDE which uses all components performs better than other algorithms just using some components. The total results calculated by Kruskal-Wallis test and Friedman test are summarized in Table XIV, where K+ means that the algorithm obtains the best result among all algorithms, and K- and K≈ indicate that the algorithm is significantly worse than and almost similar to the best algorithm, respectively. The results show that GLCDE obtains the best performance since it achieves the best results on 18 out of 23 functions and gets the best ranking. In addition, the results are significantly improved when the rest one component is added to GLCDE12, GLCDE13, and GLCDE23. This indicates that each component play an important role in the proposed GLCDE. However, the contribution of the better-based mutation strategies may be larger than other components as the ranking of GLCDE13 are improved from 4.24 to 2.13 when it is combined to GLCDE.
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Response: We have added the description of the difference between this manuscript and our previously published journal papers in Section IV-F. As shown in Fig.1, the proposed GLCDE is characterized by its underestimation-based global and local cooperative scheme. In GLCDE, the global exploration and the local exploitation are simultaneously performed for each generation. The exploration is carried out by employing the mutation strategies with strong exploration capability in the global phase, while the mutation strategies with strong exploitation capability are used to serve the exploitation purpose in the local phase. In both the global phase and local phase, a set of trial individuals is produced for each target individual by employing multiple strategies. To select a promising one among them as the candidate, the underestimation model is used to evaluate the quality of these trial individuals rather than the real function value because the underetimation calculation is usually much cheaper than the real function evaluation, especially for the computationally expensiver problems (e.g. protein structure prediction problem). Based on the underestimation of each trial individual, the one with the lowest underestimation value is selected as the candidate offspring. That is, the accuracy of the underestimation model directly determines the candidate individual selected from the multiple trial individuals. However, in the underestimation model, the slope parameter M signifianctly affects the accuracy of the underestiation[1]. Therefore, we proposed an adaptive underestimation model, in which M is gradually self-adapted by learning the evaluated trial individuals. In addition, a kind of better-based strategy guided by individuals that are better than the target individual are designed to preserve the population diversity and exploitation capability simultaneously in the local phase.
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Fig. 1. The pipeline of GLCDE.
The presented GLCDE in this manuscript is based on our previous work in [1] and [2], but it significantly differs from them in the following aspects:
1) In [1] and [2], the slope control parameter M of the supporting function which significantly influences the accuracy of the underestimation is set as a constant for all problems according to the numerical study. However, the value of M is gradually self-adapted by learning the evaluated trial individuals in the proposed GLCDE. Therefore, GLCDE can get more accurate underestimation to guide the evolution process compared to [1] and [2]. This will be verified by the experimental results in Section VI-E of the manuscript.

2) The underestimation of the objective function is calculated for different purposes. In [1], the underestimation is constructed for all trial individuals to obtain the error between the underestimation and the real function value, and the underestimation error is applied to measure the degree of convergence. In [2], the underestimation is utilized to exclude the invalid search region and guide the local enhancement. However, the underestimation is constructed based on the only two individuals near the trial individual to filter multiple candidate individuals generated in both local and global phases.
3) Different mutation strategies are used or designed for these three algorithms. In [1], the whole search process is dynamically divided into three stages to select suitable mutation strategies from the corresponding strategy pools. In [2], only a single mutation strategy is employed for the trial individual generation in the whole searching process. In the proposed GLCDE, each individual is performed both the global phase and local phase by using different mutation strategies, and multiple mutation strategies are utilized to simultaneously create a set of candidate individuals in each phase.
4) In [1], a centroid-based mutation strategy which uses the centroid of multiple superior individuals is proposed to balance the convergence speed and population diversity in the second stage. In the proposed GLCDE, a different new mutation strategy named better-based mutation strategy is designed for the local phase. In the new strategy, the information of individuals better than the target individual is apply to guide the exploitation. The comparison of these two strategies will be reported in Section VI-E of the manuscript.
5) In [1], the crossover rate CR and scaling factor F is adaptively determined according to their weighted mean of the sucess value in the previous generation. In [2], these two parameters is generated by using the method from other published papers. However, in our proposed GLCDE, the range of the parameter is divided into multiple intervals with a step, and a selection probability updated according to the successful rate is allocated to each interval. The parameter has a higher probability to be generated in the interval with higher selection probability.
[1] X. G. Zhou and G. J. Zhang, “Abstract convex underestimation assisted multistage differential evolution,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2730–2741, Sep. 2017. 
[2] X. G. Zhou, G. J. Zhang, X. H. Hao, D. W. Xu, and L. Yu, “Enhanced differential evolution using local lipschitz underestimate strategy for computationally expensive optimization problems,” Appl. Soft Comput., vol. 48, pp. 169–181, Nov. 2016. 
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Response: Thank you for your suggestion. We have added the comparison between the proposed GLCDE and several surrogate model-based algorithms on the CEC 2013 benchmark functions in Section VI-D, and the comparison on a real-world expensive problem, i.e., protein structure prediction problem, is also added to Section VI-G. As we cannot get the source code of other surrogate algorithms, we just compared with CSM-SHADE[1], GPEME[2], ESMDE[3], LLUDE[4], and UMS-SHADE[5]. The results are reported as follow:
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Table S13 of the supplementary file reports the mean and standard deviation of the function error for each problem. The data shows that the proposed GLCDE achieves better results with lower function errors compared to these 5 algorithms. Also, the significant test results between GLCDE and each comparison algorithm are summarized in Table VI. As shown in the table, the results provided by GLCDE is significantly better than CSM-SHADE, GPEME, ESMDE, LLUDE, and UMS-SHADE on 15, 26, 25, 17, and 11 out of 28 functions, respectively. However, CSM-SHADE, GPEME, ESMDE, LLUDE, and UMS-SHADE significantly outperform GLCDE only on 10, 2, 3, 5, and 10 cases, respectively. 
The proposed GLCDE is further compared with CSM-SHADE, GPEME, ESMDE, LLUDE, and UMS-SHADE on the 10 benchmark proteins. The parameters of these control methods are determined in the light of their published papers. The mutation and crossover operations in all these approaches are performed by the fragment exchange and fragment assembly. All algorithms are stopped when the number of energy function evaluations reaches 300,000, and the conformation with the lowest energy is selected as the final model. Tables S26 and S27 of the supplementary file shows the RMSD and TM-score of the final model generated by these algorithms on each protein, respectively. It is clear that the models predicted by GLCDE are better than the comparison algorithms for most of the cases. The average results of all proteins listed in Table XVIII reveal that GLCDE attains the lowest RMSD (6.55Å). In terms of TM-score, the average result of GLCDE is 0.48, which is higher than all compared algorithms.
The final models of GLCDE predicted within 2 h are also compared with those generated by CSM-SHADE, GPEME, ESMDE, LLUDE, and UMS-SHADE. The RMSD and TM-score of each test protein are given in Tables S28 and S29 of the SF, respectively. The data in the table indicates that GLCDE models provide lower RMSD and higher TM-score compared to the control methods for the majority of proteins. Furthermore, the average results given in Table XIX indicate that GLCDE obtains an average TM-score of 0.46, which is the highest among these approaches and 6.5% higher than that of the best control method. Also, the average RMSD of GLCDE (6.68Å) is obviously lower than that of the competitors.
[1] W. Gong, A. Zhou, and Z. Cai, “A multioperator search strategy based on cheap surrogate models for evolutionary optimization,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 746–758, Oct. 2015.

[2] B. Liu, Q. Zhang, and G. Gielen, “A gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems,” IEEE Trans. Evol. Comput., vol. 18, no. 2, pp. 180–192, Apr. 2014.

[3] R. Mallipeddi and M. Lee, “An evolving surrogate model-based differential evolution algorithm,” Appl. Soft Comput., vol. 34, pp. 770–787, Sep. 2015.
[4] X. G. Zhou, G. J. Zhang, X. H. Hao, D. W. Xu, and L. Yu, “Enhanced differential evolution using local lipschitz underestimate strategy for computationally expensive optimization problems,” Appl. Soft Comput., vol. 48, pp. 169–181, Nov. 2016. 
[5] X. G. Zhou and G.J. Zhang, “Differential evolution with underestimation-based multimutation strategy,” IEEE Trans. Cybern., 2018, DOI: 10.1109/TCYB.2018.2801287, to be published.
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Response: Thank you for your suggestion. We have modified these according to your suggestions, and checked the entire manuscript.
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[3] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “An improved self-adaptive differential evolution algorithm for optimization problems,” IEEE Trans. Ind. Inf., vol. 9, no. 1, pp. 89–99, Feb. 2013.
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Response: Thanks for your suggestion. The computational time of the proposed GLCDE on the problem with different dimensions is added to Section VI-F. The results are shown as follow:
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The results show that 
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 grows linearly. In addition, the effectiveness and efficiency of the proposed GLCDE on a real-world expensive problem (i.e., the protein structure prediction problem) is also verified by comparing with these approaches which are also developed for computationally expensive problems (Section VI-G). The results shown in the tables below indicate that GLCDE is more effective and efficiency than the compared algorithms for the PSP problem, as it can generate more accurate models with lower RMSD and higher TM-score within the given time.
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1. We have added the comparison between the proposed GLCDE and several surrogate model-based algorithms on the CEC 2013 benchmark functions in Section VI-D, and the comparison on a real-world expensive problem, i.e., protein structure prediction problem, is also added to Section VI-G. As we cannot get the source code of other algorithms, we just compare with CSM-SHADE[1], GPEME[2], ESMDE[3], LLUDE[4], and UMS-SHADE[5] over the CEC 2013 benchmark set and real-word computationally expensive problems (i.e., the protein structure prediction problem).  The results show that the proposed GLCDE is better than the compared algorithms on most of the benchmark functions. Also, GLCDE is more effective and efficiency than the compared algorithms for the PSP problem, as it can generate more accurate models with lower RMSD and higher TM-score within the given time. Detailed results are show as follow:
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Table S13 of the supplementary file reports the mean and standard deviation of the function error for each problem. The data shows that the proposed GLCDE achieves better results with lower function errors compared to these 5 algorithms. Also, the significant test results between GLCDE and each comparison algorithm are summarized in Table VI. As shown in the table, the results provided by GLCDE is significantly better than CSM-SHADE, GPEME, ESMDE, LLUDE, and UMS-SHADE on 15, 26, 25, 17, and 11 out of 28 functions, respectively. However, CSM-SHADE, GPEME, ESMDE, LLUDE, and UMS-SHADE significantly outperform GLCDE only on 10, 2, 3, 5, and 10 cases, respectively.
The proposed GLCDE is further compared with CSM-SHADE, GPEME, ESMDE, LLUDE, and UMS-SHADE on the 10 benchmark proteins. The parameters of these control methods are determined in the light of their published papers. The mutation and crossover operations in all these approaches are performed by the fragment exchange and fragment assembly. All algorithms are stopped when the number of energy function evaluations reaches 300,000, and the conformation with the lowest energy is selected as the final model. Tables S26 and S27 of the supplementary file shows the RMSD and TM-score of the final model generated by these algorithms on each protein, respectively. It is clear that the models predicted by GLCDE are better than the comparison algorithms for most of the cases. The average results of all proteins listed in Table XVIII reveal that GLCDE attains the lowest RMSD (6.55 Å). In terms of TM-score, the average result of GLCDE is 0.48, which is higher than all compared algorithms.
The final models of GLCDE predicted within 2 h are also compared with those generated by CSM-SHADE, GPEME, ESMDE, LLUDE, and UMS-SHADE. The RMSD and TM-score of each test protein are given in Tables S28 and S29 of the SF, respectively. The data in the table indicates that GLCDE models provide lower RMSD and higher TM-score compared to the control methods for the majority of proteins. Furthermore, the average results given in Table XIX indicate that GLCDE obtains an average TM-score of 0.46, which is the highest among these approaches and 6.5% higher than that of the best control method. Also, the average RMSD of GLCDE (6.68Å) is obviously lower than that of the competitors.
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The reviewers have a number of concerns about the manuscript with the most significant concern is regarding the overlap between the contribution of the current paper and the authors' previously published journal paper on the same topic. Without a clear significant contribution, it is hard to justify publishing the paper in TEVC.





The first and major concern is the clarity of contributions and differences with their previous work [15]. To me, the contribution seems minor (i.e., updating the M parameter in the underestimation model). The idea of using the best individual (eq. 14) among 3 random ones is not new. The same is for the technique used for adapting CR.





The effect of the number of trial vectors generated for each individual should be analyzed.





In equation 8, what will happen if more than two individuals are used?





The authors mentioned that the underestimations should always be below the objective function, but this does not seem valid in Fig .2 .a.





Regarding the so-called "better-strategy" operators, in the case these operators are applied to the best individual, replacing "x_better" with a random one does not seem to serve the exploitation purpose in the local phase. So, the authors need to comment on this issue. What is the effect of using the “best” individual instead of “better” one? Also, it is not clear which mutation strategies are used in the global phase.





The selection of the range ([0.1-0.9]) used in adapting CR should be justified/ analyzed, as for the CEC problems some problems need a very small value (i.e., <0.1).  Also, why did the author self-adapt CR only?  The effect of the range used for F should be analyzed as well.





The authors did not compare their results to the UMOEAII (winner of a CEC competition).  Also, it is good to compare the current algorithm against their earlier one (UMDE) on the CEC2013-CEC17 problems.





It is very important to show the computational time of the proposed algorithm (i.e., follow the techniques used in all CEC competitions), as the algorithm seems to be computationally expensive in comparison to many existing ones.





The literature review section lacks many important papers published over the last few years.





The authors propose a DE variant assisted by: 


1. An underestimation-based surrogate model. 


2. New mutation operators. 


3. A parameter adaptation scheme. 


Experimental evidence suggesting the superiority of the proposed method against classical benchmark DE variants on CEC test suites are provided. 


However, in my opinion, it is hard to distinguish how each new element of the algorithm influences its performance. I suggest that the authors study all combinations of the three new elements (1, 2, 3, 1+2, 1+3, 2+3, and 1+2+3) to see if all of them are really essential in the proposed method. I don't mean the analysis provided in Section V.D but plain DE equipped with combinations of the proposed developments as above. This will reveal also the most crucial parts of the new algorithm, which is important in terms of sensitivity analysis.  





Moreover, the authors shall clearly differentiate this work from a previous one with similar underestimation models: 


Xiao-gen Zhou, Gui-jun Zhang∗, Xiao-hu Hao, Dong-wei Xu, Li Yu, "Enhanced differential evolution using local Lipschitz underestimate strategy for computationally expensive optimization problems", Applied Soft Computing 48 (2016) 169-181.





Furthermore, I expected to see extensive comparisons with other approaches aiming at computationally expensive problems, such as surrogate models-based evolutionary algorithms etc. Such comparisons are missing from the paper, since the vast majority of the competitor algorithms are not specialized for such problems. Hence, I suggest the redesign of the experimental part on the basis of comparisons with algorithms of the same type as well as on actually expensive problems.





-- Change the title of Section II to "Background Information". �-- Under Eq.(3), replace "r_1-r_3" with "r_1, r_2, r_3". �Also it must be explicitly stated that NP shall be higher or equal to 4, otherwise the presented DE algorithm is not applicable. �-- p.4,line 14: change "fromer" to "former". �-- p.6, line 19, under Eq.(13): change "retains" to "remains". 





-- In Section III you may add also the following very recent dynamic parameter adaptation method applied on DE:  � HYPERLINK "https://www.sciencedirect.com/science/article/pii/S15684946183" �https://www.sciencedirect.com/science/article/pii/S15684946183� 05519 





With analysis of the pseudo-code of Algorithm 1 authors have shown runtime complexity of the proposed algorithm. The authors also have to demonstrate these conclusions with experiments. They must show a relationship between the runtime and the dimension of the problem. With this information, the runtime complexity can be determined.





Discussion about surrogate models should be included in the paper. 





Typos: 


where r_1 – r_3 are mutually different indices randomly selected from the range [1, NP] , and ... 


=> where r_1 – r_3 are mutually different indices randomly selected from the range {1, NP} , and … 


Let x^g_a and  x^g_b are the two individuals near u^g_i, where a not_equal b \in [1, NP] 


=> Let x^g_a and  x^g_b are the two individuals near u^g_i, where a not_equal b \in {1, NP}
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